ОЦЕНКА БИОЛОГИЧЕСКОЙ ЭФФЕКТИВНОСТИ (СТИМУЛИРУЮЩИХ И БИОКОНТРОЛИРУЮЩИХ СВОЙСТВ) БИОПРЕПАРАТА ТРИХОПЛАНТ

Сидякин А.И., Филоненко В.А.

НПО Биотехсоюз. 127591 г. Москва, ул. Дубнинская д. 79, стр.14.

В настоящее время в борьбе с фитопатогенными микроорганизмами широко используются биопрепараты на основе микромицетов Trichoderma [Голованова, 2008.]. Выступая естественными обитателями многих природных и искусственных субстратов, быстро размножаясь в условиях культуры и природы, являясь не патогенными для растений, животных и человека, грибы рода Trichoderma представляют собой удобный объект для изучения и разработки на основе их активных штаммов средств биоконтроля фитопатогенных микроорганизмов [Александрова, Коломбет, 2007; Рудаков, 1981; Сейкетов, 1982; Атеф, 2011]. В связи с этим, важной задачей является поиск новых антагонистически активных штаммов Trichoderma и создание на их основе новых эффективных биопрепаратов, а также расширение спектра действия уже существующих.

Поскольку в научной литературе данных о возможности использования микромицетов *Trichoderma longibrachiatum* в качестве биоконтрольного агента, перспективного для производства биопрепаратов, обнаружено не было целью настоящего исследования являлась оценка биоконтролирующих и стимулирующих свойств биопрепарата ТРИХОПЛАНТ, производимого на основе *Trichoderma longibrachiatum* GF 2/6

Исследования ростстимулирующих свойств биопрепарата проводили на базе лабораторий НПО Биотехсоюз в 2014 г. в условиях лабораторного вегетационного опыта [Практикум по агрохимии, 2001]. В качестве объектов исследования использовались семена и проростки огурцов (*Cucumis sativus*

L.) сорта Феникс 640, озимой мягкой пшеницы (*Triticum aestivum* L., разн. erythrospermum) сорта Заграва, томатов (*Lycopersicon esculentum* Mill.) сорта Агата.

Исследование ростстимулирующих свойств биопрепарата. Влияние препарата ТРИХОПЛАНТ на прорастание семян и ростовые процессы растений проводили при проращивании семян на фоне препарата с титром спор не менее 1×10^5 KOE/cм 3 (1,0%-ный раствор готового препарата) и отстоянной водопроводной воды (контроль). Для всех исследуемых объектов оценивали следующие показатели: энергию прорастания и всхожесть семян согласно рекомендаций соответствующих статей ГОСТ 12038-84, дружность, скорость прорастания [Поспелов, 2013; Угубнов, 2014] и силу роста семян при их проращивания в песке [Карпин, 2012]. У проростков и растений в условиях лабораторного вегетационного опыта исследовали надземной и длинну подземной частей в динамике на 7-й, 14-й и 21-й день выращивания, накопление сухой и сырой биомассы. Для выращивания в водной культуре в условиях лабораторного вегетационного опыта проростки растений переносили в материальные банки номинальной вместимостью 550-560 мл, содержащие 500 см³ минерального раствора Прянишникова [Практикум..., 2001]. Растения выращивали при 16-ти часовом фотопериоде, на фитолюминостате с вертикальным двусторонним способом освещения лампами типа ЛД-30Вт при интенсивности светового потока 130 Вт/м².

биоконтролирующих Изучение свойств buonpenapama. Биологическую эффективность биопрепарата Трихоплант изучали модельных опытах с использованием чистых культур производственного Trichoderma longibrachiatum **GF** 2/6 фитопатогенных штамма микромицетов (Cladosporium cucumerinum, Fusarium avenaceum, Fusarium solani, Fusarium sporotrichioides, Rhizoctonia solani, Phytophthora infestans, Alternaria растений, выделенных пораженных различными OT заболеваниями: фузариозом колоса, фузариозным увяданием, альтернариозами, ризоктониозом и др. Биологическую эффективность в

отношении фитопатогенных микромицетов определяли методом двойных культур на картофельно-глюкозном агаре (ГОСТ 12044-93) по методике, изложенной в монографии Рудакова (1981, с. 44, с изм.). Биологическую эффективность *T. longibrachiatum* GF 2/6 в отношении фитопатогенных микромицетов, выражающейся различных взаимодействий В типах оценивали и характеризовали согласно терминологии изложенной в работе [Пат. SU №1671684] с дополнениями и изменениями. Для установления микропаразитических взаимоотношений готовили по общепринятым в микологии методикам микроскопические препараты типа «раздавленная капля», которые микроскопировали и фотографировали на микроскопе ЛОМО МИКМЕД-6 вар 7 с фазово-контрастным устройством.

Ростстимулирующие свойства биопрепарата Трихоплант. Как показали проведенные исследования под действием биопрепарата ТРИХОПЛАНТ, энергия прорастания повышалась на 3,0-12,5%, а всхожесть семян изучаемых культур повышалась на 7,7-19,0% (табл. 1).

Таблица 1. Влияние биопрепарата Трихоплант на изменение энергии прорастания и всхожести семян различных сельскохозяйственных культур (X±Sx)

Вариант опыта		Энергия прорастания семян						
		Огурцы Феникс 640		Томат Агата		Пшеница Заграва		
		шт.	%	ШТ.	%	ШТ.	%	
Энергия	Контроль	11,0±0,2	27,5±2,1	18,0±3,5	45,0±5,7	7,0±0,6	17,5±7,1	
прорастания	Трихоплант	14,0±0,3	35,0±0,4	23,0±0,1	57,5±1,0	10,0±0,8	25,0±0,9	
Всхожесть	Контроль	26,9±0,19	67,3±1,1	30,0±0,77	75,0±1,4	28,9±0,21	72,3±1,5	
Benomeerb	Трихоплант	30,0±0,3	75,0±0,2	37,6±0,8	94,0±0,3	33,9±0,6	84,8±0,7	

Как показали проведенные исследования, под действием биопрепарата ТРИХОПЛАНТ повышались такие показатели как дружность прорастания семян (на 0,8-1,4%, табл. 2), но увеличивался средний срок, за который прорастало одно семя (скорость прорастания семян возрастала на 0,6-1,0 сут, табл. 3). Обработка семян биопрепаратом Трихоплант, оказывала стимулирующее действие и на способность семян формировать сильные проростки: сила роста семян повышалась на 0,5-2,4 отн.ед. (табл. 5).

Таблица 2. Влияние биопрепарата Трихоплант на изменение дружности прорастания семян различных сельскохозяйственных культур (X±Sx)

	Дружность прорастания (проросших семян/сутки)				
Вариант опыта	Огурцов Феникс	Томото Атото	Пшеница		
	640	Томата Агата	Заграва		
Контроль	3,8±0,2	4,3±0,4	4,1±0,3		
Трихоплант	4,6±0,3	5,7±0,5	5,1±0,1		

Таблица 3. Влияние биопрепарата Трихоплант на изменение скорости прорастания семян различных сельскохозяйственных культур (X±Sx)

	Скорость прорастания семян				
Вариант опыта	Огурцов Феникс	Томат Агата	Пшеницы		
	640 0,6	TOMAT ATATA	Заграва		
Контроль	3,7±0,3	2,9±0,9	5,1±0,8		
Трихоплант	4,3±0,5	3,9±0,8	6,1±0,5		

По результатам проведенных исследований наиболее отзывчивым к действию биопрепарата оказался сорт огурцов Феникс 640, в связи с чем, дальнейшие исследования проводились на этой культуре. Проведенные исследования влияния препарата ТРИХОПЛАНТ на высоту надземной части растений огурцов на 7-е, 14-е и 21-е сутки показали, что по сравнению с контрольным вариантом опыта высота надземной части растений огурцов сорта Феникс 640 на 7-е и 14-е сутки увеличивалась на 12,5-39,1 % (табл. 5).

Проведенные исследования показали, что по сравнению с контролем обработка растений огурцов биопрепаратом Трихоплант способствовала увеличению сырой массы надземной части на 21,7 % и сырой массы

Таблица 4. Влияние биопрепарата Трихоплант на изменение силы роста семян различных сельскохозяйственных культур (X±Sx)

	Сила роста семян					
Вариант опыта	Огурцов Феникс	Томата	Пшеницы			
	640	Агата	Заграва			
Контроль	17,9±0,9	2,9±0,5	6,7±0,4			
Трихоплант	20,6±0,8	3,4±0,4	7,3±0,3			

Таблица 5. Влияние биопрепарата Трихоплант на процессы роста и развития растений огурцов сорта Феникс 640 при однократной корневой обработке

	Высота надземной части растений						
Вариант	7 сутки		14 сутки		21 сутки		
опыта	СМ	% к	СМ	% к	СМ	% к	
	CIVI	контролю	CIVI	контролю	CIVI	контролю	
Контроль	4,0±0,09	100,0	4,6±0,09	100,0	8,2±0,15	100,0	
Трихоплант	4,5±0,11	112,5	6,4±0,07	139,1	8,3±0,07	101,2	

системы на 2,2%. Обработка биопрепаратом Трихоплант, так же способствовала увеличению сухой биомассы растений: по отношению к контролю масса надземной части увеличилась на 0,12 г (41,7%), а масса корневой системы напротив, снижалась на 0,019 г (или 5,9%) (табл. 6).

 Таблица 6.

 Влияние биопрепарата Трихоплант на процессы накопления биомассы растениями огурцов сорта Феникс 640

Вариант	Сырая масса				Сухая масса			
	надземной		Подземной		надземной		Подземной	
опыта	части		части		части		части	
Olibita	г	% к	г	% к	г	% к	г	% к
	Γ	контролю	Γ	контролю	Γ	контролю	Γ	контролю
Контроль	1,59±	100,0	0,92±	100,0	0,12±	100,0	$0,021\pm$	100,0
	0,05	100,0	0,07	100,0	0,04	100,0	0,19	100,0
Трихоплант	1,94±	121,7	$0,94 \pm$	102,2	$0,17\pm$	141,7	0,019±	94,1
	0,04	121,7	0,05	102,2	0,016	141,7	0,017	74,1

Биоконтролирующие свойства штамма Trichoderma longibrachiatum **GF** 2/6. Проведенные исследования биологической эффективности штамма Trichoderma longibrachiatum GF 2/6, в подавлении роста колоний фитопатогенных микромицетов – возбудителей трахеомикозов, фузариозов, корневых гнилей и пятнистостей на примере Fusarium avenaceum, F. solani F. sporotrichioides; Alternaria sp., И Rhizoctonia solani, Phytophthora infestans, Cladosporium cucumerinum показали, что *T. longibrachiatum* начиная с третьих суток совместного культивирования фитопатогенами, проявляет фунгистатический территориальный антагонизм, ограничивая разрастание колонии фитопатогенов по поверхности питательной среды (рис. 1).

На 4-5-е сутки совместного культивирования для всех исследуемых видов отмечено уменьшение зоны прироста колонии возбудителей микозов с началом проявления антибиотического и алиментарного антагонизма, что на 7-е сутки проявлялось в виде нарастания колонии триходермы на колонии патогенов (рис. 1, 2). При дальнейшем культивировании колонии фитопатогенов оказывались полностью подавлены колонией *Trichoderma*, а при микроскопическом исследовании таких колоний наблюдали картину прямого паразитизма *Trichoderma* на фитопатогене (рис. 5).

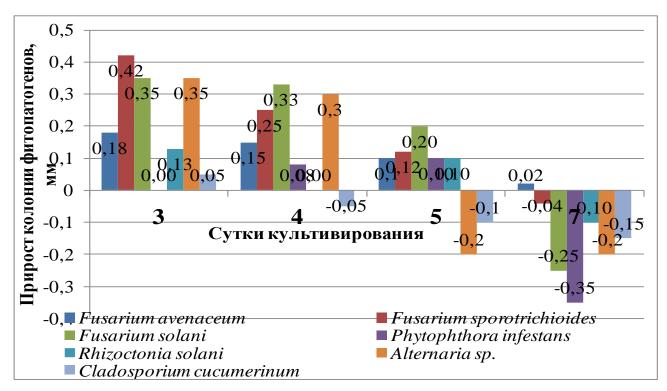


Рис. 1. Влияние *Trichoderma longibrachiatum* GF 2/6 на изменение прироста колоний фитопатогенных микромицетов — возбудителей трахеомикозов, фузариозов, оливковой пятнистости, ризоктониоза, альтернариоза и фитофторозов.

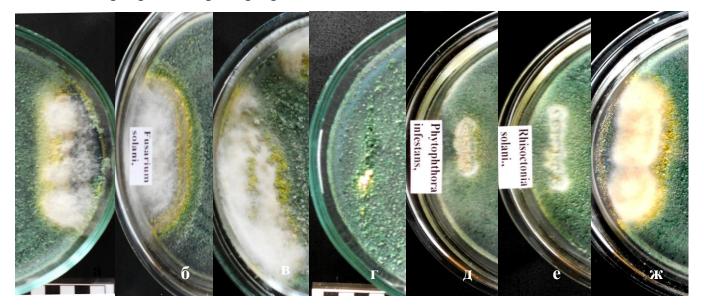


Рис. 2. Изменение морфологии колоний фитопатогенных микромицетов при их совместном культивировании с T. longibrachiatum GF 2/6 в течение 7 суток: $\mathbf{a} - Fusarium$ avenaceum, $\mathbf{6} - Fusarium$ solani, $\mathbf{b} - Fusarium$ sporotrichioides, $\mathbf{r} - Cladosporium$ cucumerinum, $\mathbf{g} - Phytophthora$ infestans, $\mathbf{e} - Rhizoctonia$ solani, $\mathbf{w} - Alternaria$ sp.

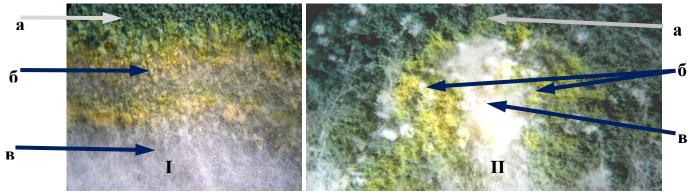


Рис. 3. Алиментарный фунгистатический антагонизм (прямой паразитизм) *T. longibrachiatum* GF 2/6 (ув. ×16): \mathbf{a} — зона роста колонии *Trichoderma*; $\mathbf{6}$ — зона роста и паразитизма *Trichoderma* на *F. solani* (I) или *F. sporotrichioides* (II); \mathbf{a} — колония *F. solani* (I) или *F. sporotrichioides* (II).

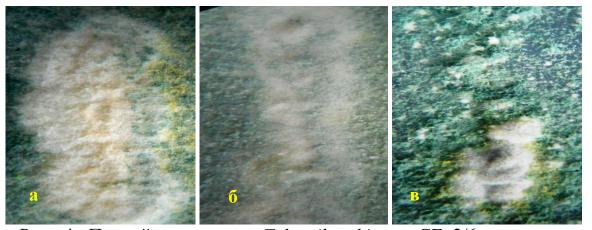


Рис. 4. Прямой паразитизм *T. longibrachiatum* GF 2/6 в отношении колоний *Cladosporium cucumerinum* (**a**), *Phytophthora infestans* (**6**), *Rhizoctonia solani* (**B**) (ув. ×16).



Рис. 5. Гифы *T. longibrachiatum* GF 2/6 (указано стрелками), проникшие в гифы мицелия фитопатогенного микромицета *Rhizoctonia solani* (ув. ×1600).

Заключение. Таким образом, ПО результатам проведенных исследований установлено, что проращивание семян пшеницы, огурцов и биопрепарата ТРИХОПЛАНТ томатов фоне повышает прорастания семян на 3-12%, всхожесть семян этих культур на 7-19%, и способствует увеличению силы роста семян на 0,5-2,4%. Проведенные биопрепарат исследования показали, что ТРИХОПЛАНТ, оказывает стимулирующее действие на рост растений огурцов. Под действием однократной обработки высота надземной части увеличивалась в среднем на 25,8%, сырая масса надземной части возрастает на 21%, а накопление сухого вещества надземной частью растений огурцов увеличивается на 41,7%.

Исследования биоконтролирующих свойств действующего начала биопрепарата ТРИХОПЛАНТ – микромицета Trichoderma longibrachiatum штамм GF 2/6 в отношении фитопатогенных микромицетов *Fusarium* avenaceum, Fusarium solani, Fusarium sporotrichioides, Cladosporium cucumerinum, Phytophthora infestans, Rhizoctonia solani и Alternaria sp. показали, что данный штамм обладает в определенной степени выраженной биологической эффективностью, т.е. проявляет в отношении изученных вобудителей заболеваний растений биоконтролирующие свойства, которые выражаются в прямом паразитировании (фунгистатическом алиментарном антагонизме) в отношении *Ph*. infestans, Rh. solani, C. cucumerinum, F. sporotrichioides, F. solani, F. avenaceum, и Alternaria sp; фунгистатическом антибиотическом И территориальном антагонизме антагонизме ограничении и подавлении развития мицелия фитопатогенов в отношении F. avenaceum, F. solani, F. sporotrichioides, C. cucumerinum, Ph. infestans, Rh. solani и Alternaria sp.

Список использованной литературы

^{1.} Голованова Т.И., Долинская Е.В., Костицына Ю.Н. Влияние грибов рода *Trichoderma* на ростовые процессы растений пшеницы // Исследовано в России. – 2008. – С. 173-182

^{2.} Александрова А.В. Род *Trichoderma* Pers.: Fr. // Новое в систематике и номенклатуре грибов / [Под ред. Ю.Т. Дьякова, Ю.В. Сергеева]. – М.: Национальная академия микологии, Медицина для всех, 2003. – С. 219-275.

- 3. Коломбет Л.В. Грибы рода *Trichoderma* продуценты биопрепаратов для растениеводства // Микология сегодня. Т. 1. / Под ред. Дьякова Ю.Т., Сергеева Ю.В. М.: Национальная академия микологии, 2007. С. 323-371.
- 4. Рудаков О.Л. Микофильные грибы, их биология и практическое значение. М.: Наука, 1981. 160 с.
- 5. Сейкетов Г.Ш. Грибы рода *Trichoderma* и их использование в практике. Алма-Ата: Наука, 1982. 248 с.
- 6. Атеф Абдельмохсен Абдельрахман Ахмед. Влияние *Trichoderma* почв Египта и республики Татарстан на отдельные параметры живых систем: Автореф. дис. канд. биол. наук. Казань, 2011. 28 с.
- 7. Практикум по агрохимии: учебное пособие. -2-е изд., перераб. и доп. /под. ред. академика РАСХН В.Г.Минеева. М.: изд-во МГУ , 2001 C.248 258.
- 8. Поспелов С. В. Влияние пространственного размещения семянок эхинацеи на их прорастание //Лекарственное растениеводство: от опыта прошлого к современным технологиям: матер. Второй междунар. науч.-практ. интернет-конференции., Полтава, 2013. С. 71-73.
- 9. Убугунов В.Л., Доржонова В.О. Оценка фитотоксичности свинца в дерново-подбуре. [Электронный ресурс]. Режим доступа: http://sun.tsu.ru/mminfo/000063105/338/image/338-207.pdf (дата обращения: 13.04.2015).
- 10. Методика определения силы роста семян кормовых культур / В.И. Карпин, Н.И. Переправо, В.Н. Золотарев, В.Э. Рябова, Э.З. Шамсутдинова, Т.В. Козлова. М.: Изд-во РГАУ МСХА, 2012. 16 с.
- 11. Пат. 1671684 СССР, МПК⁵ С12N 1/14 A 01 N 63/04. Способ отбора штаммов грибов *Trichoderma* антагонистов фитопатогенных грибов / Беляева В. Б., Худякова Е. А., Коган В. Ш., Ключников В. И. Заявитель и патентообладатель: Научно-исследовательский институт овощного хозяйства. № 4722440/13; заявл. 30.06.89; опубл. 23.08.91. Бюл. № 31.